and even on the roofs of partially submerged automobiles (Ernst and Lovich 2009, op. cit.). At 1200 h on 14 May 2018, we observed *C. picta* basking on a dead *Castor canadensis* (American Beaver; Fig. 1A) and on a dead *Cyprinus carpio* (Common Carp; Fig. 1B) at Medicine Lake in Hennepin County, Minnesota, USA. To our knowledge, this is the first report of *C. picta* basking on animal carcasses.

KIRSTEN D. HUNT (e-mail: kirsten.d.hunt@gmail.com) and BRADLEY J. SWANSON, Central Michigan University, Department of Biology, Mount Pleasant, Michigan 48859, USA; JOHN J. MORIARTY, Three Rivers Park District, Plymouth, Minnesota 55601, USA; TIMOTHY L. LEWIS and JENNIFER T. MCGUIRE, University of St. Thomas, St. Paul, Minnesota 55105, USA.


Few published studies have investigated the use of streams as habitat or as a factor influencing habitat connectivity for *C. guttata*. Individuals have been documented occupying slow-moving water systems such as drainage ditches and backwater areas of rivers (Stevenson et. al., op. cit.), and hibernating on the bottom of shallow (ca. 0.2 m) streams (Ernst 1982. J. Herpetol. 16:112–120). Streams with moderate or rapid flow rates bisecting wetlands could act as barriers to movement, but could also function as travel corridors among wetland patches. Here, we report radiotelemetry-based data showing that individuals in a *C. guttata* population often cross a moderate-flow stream while moving among wetland patches, as well as an observation of apparent use of the stream as a travel corridor.

In spring of 2018, we conducted a radiotelemetry study using six *C. guttata* in a 20-ha wetland complex in Hampshire County, West Virginia, USA (specific location withheld in compliance with state of West Virginia sensitive species data practices). The wetland complex consists of a matrix of seasonally flooded shallow grassy marshes, forest ponds, and dry upland grassland and forest. The wetland complex is bisected by a small, moderate-flow stream (2–4 m wide, 0.2–1.2 m deep, ca. 0.029 cm/s flow rate during the study period). *C. guttata* were outfitted with 3.6-g glue-on radiotransmitters (Advanced Telemetry Systems [ATS], Isanti, Minnesota), and tracked from 5 April to 7 May using a R410 scanning receiver (ATS) and 3-element folding yagi antenna. Each individual was located a minimum of three times per week.

During the study, five of the *C. guttata* made stream crossings to access additional wetlands. The females (N = 2) crossed the stream to access a wetland adjacent to the one previously occupied, whereas the males (N = 3) appeared to use the stream as a corridor to move to other wetlands. For example, on 1 May 2018, a male *C. guttata* was tracked into a shallow grassy marsh. On 3 May 2018, at ca. 1030 h, the same individual was tracked a straight-line distance of 0.04 km into the stream and located among a collection of wood and debris that had been trapped by a tree limb that had fallen across the water (Fig. 1). At ca. 1400 h on the same day, the individual was tracked 0.05 km downstream from its previously tracked location, into another wood and debris collection that had developed among the vegetation growing along the bank of the stream. On 4 May 2018, the individual was located in a temporary shrub-sedge wetland, a straight-line distance of 0.05 km from the previously tracked location. On 7 May 2018, the individual was then tracked back...
to the original shallow grassy marsh, 0.13 km from the previous location.

KEVIN J. OXENRIDER (e-mail: kevin.j.oxenrider@wv.gov) and BERLYNNA M. HERES, West Virginia Division of Natural Resources, 1 Depot Street, Romney, West Virginia 26757, USA; DONALD J. BROWN, School of Natural Resources, West Virginia University, Morgantown, West Virginia 26506, USA; Northern Research Station, U.S. Forest Service, Parsons, West Virginia 26287, USA (e-mail: donald.brown1@mail.wvu.edu).


We recorded E. blandingii for 23 h during April 2009, where M. Pappas has been conducting a long-term population study of this species for the last 40 years, at McCarthy Wildlife Management Area near Weaver Dunes, Minnesota, USA. We initially recorded six individuals (three females and three males) for six hours in captivity to obtain a baseline of the sounds they were emitting (if they were emitting sounds, we needed to know the structure and frequency of the sounds so that we could detect these sounds in nature and distinguish them from the other environmental noises), and to help us adjust the recording equipment for recording these frequencies. We then recorded wild turtles for a total of 17 h during four sessions within the hours of 0900–1200 over a four-day period, in a vernal pool where Blanding’s Turtles come year after year to court and copulate in the McCarthy Wildlife Management Area. We chose this area because it is one of the few times and places during the year where we are certain to find the turtles, and, presumably, they are more likely to produce sounds when they are in the presence of other turtles than if they are alone. All sound recordings were made using a Fostex FR-2 recorder adjusted to 48 kHz at 24 bits. The underwater recordings were made with a Reson (TC4043) omnidirectional hydrophone with sensitivity of 2 Hz–100 kHz ± 3 dB. Airborne sounds were recorded using a Sennheiser K6 unidirectional microphone with a Sennheiser ME-66 windscreen. While recording at the surface of the water, the microphone was positioned 30 cm above the water and pointed towards a floating log 40 cm away where the turtles were frequently noted basking (Figs. 1, 2), to capture the sounds as the heads of the turtles were breaking the surface and during basking. We inserted the hydrophone 0.5 m from the bottom of the pool (depths varied from 1 to 1.5 m) and 40 cm from the bank of the pool. We monitored the recordings in real time using Sony MDR-7506 headphones and adjusted the recording level manually to maximize the signal-to-noise ratio and to prevent distortions (“clipping”) caused by excess gain.

Raven Pro 1.3 (Cornell Laboratory of Ornithology) was used to analyze the recordings using the following spectrographic parameters: window type—Hamming; window size—512 samples. Sounds with similar characteristics of published turtle sounds (Giles et al. 2009, op. cit.; Ferrara et al. 2012, op. cit.) and within the hearing range of turtles (Ridgway et al. 1969. Proc. Nat. Acad. Sci. 64:884–890) were detected manually by two experienced researchers using visual and aural inspection of the recordings.